Please Whitelist This Site?

I know everyone hates ads. But please understand that I am providing premium content for free that takes hundreds of hours of time to research and write. I don't want to go to a pay-only model like some sites, but when more and more people block ads, I end up working for free. And I have a family to support, just like you. :)

If you like The TCP/IP Guide, please consider the download version. It's priced very economically and you can read all of it in a convenient format without ads.

If you want to use this site for free, I'd be grateful if you could add the site to the whitelist for Adblock. To do so, just open the Adblock menu and select "Disable on". Or go to the Tools menu and select "Adblock Plus Preferences...". Then click "Add Filter..." at the bottom, and add this string: "@@||^$document". Then just click OK.

Thanks for your understanding!

Sincerely, Charles Kozierok
Author and Publisher, The TCP/IP Guide

NOTE: Using software to mass-download the site degrades the server and is prohibited.
If you want to read The TCP/IP Guide offline, please consider licensing it. Thank you.

The Book is Here... and Now On Sale!

Get The TCP/IP Guide for your own computer.
The TCP/IP Guide

Custom Search

Table Of Contents  The TCP/IP Guide
 9  TCP/IP Lower-Layer (Interface, Internet and Transport) Protocols (OSI Layers 2, 3 and 4)
      9  TCP/IP Internet Layer (OSI Network Layer) Protocols
           9  Internet Protocol (IP/IPv4, IPng/IPv6) and IP-Related Protocols (IP NAT, IPSec, Mobile IP)
                9  Internet Protocol Version 4 (IP, IPv4)
                     9  IP Addressing
                          9  IP Subnet Addressing ("Subnetting") Concepts

Previous Topic/Section
IP Subnet Addressing Overview, Motivation, and Advantages
Previous Page
Pages in Current Topic/Section
Next Page
IP Subnet Masks, Notation and Subnet Calculations
Next Topic/Section

IP Subnetting: "Three-Level" Hierarchical IP Subnet Addressing

The simplest division of IP addresses is into a structure containing two elements: the network ID and the host ID. In explaining this concept, I drew an analogy to the way North American phone numbers are ten digits long, but are broken down into a three-number area code and a seven-digit local number.

As I mentioned in the preceding topic, subnetting adds an additional level to the hierarchy of structures used in IP addressing. To support this, IP addresses must be broken into three elements instead of two. This is done by leaving the network ID alone and dividing the host ID into a subnet ID and host ID. These subnet ID bits are used to identify each subnet within the network. Hosts are assigned to the subnets in whatever manner makes the most sense for that network.

Interestingly, the analogy to telephone numbers that we used before still holds in the world of subnetting, and shows how subnetting changes the way IP addresses are interpreted. A number like (401) 555-7777 has an area code (“401”) and a local number (“555-7777”) as I said before. The local number, however, can itself be broken down into two parts: the exchange (“555”) and the local extension (“7777”). This means phone numbers really are comprised of three hierarchical components just as IP addresses are in subnetting.

Of course, the number of bits in an IP address is fixed at 32. This means that in splitting the host ID into subnet ID and host ID, we reduce the size of the host ID portion of the address. In essence, we are “stealing” bits from the host ID to use for the subnet ID. Class A networks have 24 bits to split between the subnet ID and host ID: class B networks have 16, and class C networks only 8.

Key Concept: A “classful” network is subnetted by dividing its host ID portion, leaving some of the bits for the host ID while allocating others to a new subnet ID. These bits are then used to identify individual subnets within the network, into which hosts are assigned.

Now, remember when we looked at the sizes of each of the main classes, we saw that for each class, the number of networks and the number of hosts per network are a function of how many bits we use for each. The same applies to our splitting of the host ID. Since we are dealing with binary numbers, the number of subnets is two to the power of the size of the subnet ID field. Similarly, the number of hosts per subnet is two to the power of the size of the host ID field (less two for excluded special cases).

Figure 65: Subnetting A Class B Network

We begin with the Class B network, which has 16 bits in its host ID block as shown at top. We then subnet this network by dividing the host ID into a subnet ID and host ID. In this case, 5 bits have been allocated to the subnet ID, leaving 11 for the host ID.


Let's take a brief example to see how this works. Imagine that we start with Class B network 16 bits are for the network ID (154.71) and 16 for the host ID. In regular “classful” addressing there are no subnets (well, one “subnet” that is the whole network, but never mind about that) and 65,534 hosts total. To subnet this network, we can decide to split those 16 bits however we feel best suits the needs of our network: 1 bit for the subnet ID and 15 for the host ID, or 2 and 14, 3 and 13, and so on. Most any combination will work, as long as the total is 16, such as 5 and 11, which I illustrate in Figure 65. The more bits we “steal” from the host ID for the subnet ID, the more subnets we can have—but the fewer hosts we can have for each subnet.

Deciding how to make this choice is one of the most important design considerations in setting up a subnetted IP network. The number of subnets is generally determined based on the number of physical subnetworks in the overall organizational network. The number of hosts per subnetwork must not exceed the maximum allowed for the particular subnetting choice we make. Choosing how to divide the original host ID bits into subnet ID bits and host ID bits is sometimes called custom subnetting and is described in more detail later in this section.

Previous Topic/Section
IP Subnet Addressing Overview, Motivation, and Advantages
Previous Page
Pages in Current Topic/Section
Next Page
IP Subnet Masks, Notation and Subnet Calculations
Next Topic/Section

If you find The TCP/IP Guide useful, please consider making a small Paypal donation to help the site, using one of the buttons below. You can also donate a custom amount using the far right button (not less than $1 please, or PayPal gets most/all of your money!) In lieu of a larger donation, you may wish to consider purchasing a download license of The TCP/IP Guide. Thanks for your support!
Donate $2
Donate $5
Donate $10
Donate $20
Donate $30
Donate: $

Home - Table Of Contents - Contact Us

The TCP/IP Guide (
Version 3.0 - Version Date: September 20, 2005

Copyright 2001-2005 Charles M. Kozierok. All Rights Reserved.
Not responsible for any loss resulting from the use of this site.