Please Whitelist This Site?

I know everyone hates ads. But please understand that I am providing premium content for free that takes hundreds of hours of time to research and write. I don't want to go to a pay-only model like some sites, but when more and more people block ads, I end up working for free. And I have a family to support, just like you. :)

If you like The TCP/IP Guide, please consider the download version. It's priced very economically and you can read all of it in a convenient format without ads.

If you want to use this site for free, I'd be grateful if you could add the site to the whitelist for Adblock. To do so, just open the Adblock menu and select "Disable on". Or go to the Tools menu and select "Adblock Plus Preferences...". Then click "Add Filter..." at the bottom, and add this string: "@@||^$document". Then just click OK.

Thanks for your understanding!

Sincerely, Charles Kozierok
Author and Publisher, The TCP/IP Guide

NOTE: Using software to mass-download the site degrades the server and is prohibited.
If you want to read The TCP/IP Guide offline, please consider licensing it. Thank you.

The Book is Here... and Now On Sale!

Enjoy The TCP/IP Guide? Get the complete PDF!
The TCP/IP Guide

Custom Search

Table Of Contents  The TCP/IP Guide
 9  TCP/IP Application Layer Protocols, Services and Applications (OSI Layers 5, 6 and 7)
      9  TCP/IP Network Configuration and Management Protocols (BOOTP, DHCP, SNMP and RMON)
           9  Host Configuration and TCP/IP Host Configuration Protocols (BOOTP and DHCP)
                9  TCP/IP Dynamic Host Configuration Protocol (DHCP)
                     9  DHCP Client/Server Implementation, Features and Issues

Previous Topic/Section
DHCP Message Relaying and BOOTP Relay Agents
Previous Page
Pages in Current Topic/Section
Next Page
DHCP Server Conflict Detection
Next Topic/Section

DHCP Autoconfiguration / Automatic Private IP Addressing (APIPA)
(Page 1 of 3)

The IP address of a TCP/IP host is, in many ways, its identity. Every TCP/IP network requires that all hosts have unique addresses to facilitate communication. When a network is manually configured with a distinct IP address for each host, the hosts permanently know “who they are”. When hosts are made DHCP clients, they no longer have a permanent identity; they rely on a DHCP server to tell them “who they are”.

Client Recovery From Failure to Obtain an IP Address

The dependency of DHCP clients on servers is not a problem as long as DHCP is functioning normally and a host can get a lease, and in fact has many benefits that we have explored. Unfortunately, a number of circumstances can arise that result in one of the DHCP processes not resulting in a lease for the client. The client may not be able to obtain a lease, re-acquire one after reboot, or renew an existing lease. There are many possible reasons why this might happen:

  • The DHCP server may have experienced a failure, or may be taken down for maintenance;

  • The relay agent on the client's local network may have failed;

  • Another hardware malfunction or power failure may make communication impossible;

  • The network may have run out of allocatable addresses.

Without a lease, the host has no IP address, and without an address, the host is effectively dead in the water. The base DHCP specification doesn't really specify any recourse for the host in the event that it cannot successfully obtain a lease. It is essentially left up to the implementor to decide what to do, and when DHCP was first created, many host implementations would simply display an error message and leave the host unusable until an administrator or user took action.

Clearly this is far from an ideal situation. It would be better if we could just have a DHCP client that is unable to reach a server automatically configure itself. In fact, the IETF reserved a special IP address block for this purpose. This block, through (or in classless notation) is reserved for autoconfiguration, as mentioned in RFC 3330:

“Hosts obtain these addresses by auto-configuration, such as when a DHCP server may not be found.”

Strangely, however, no TCP/IP standard was defined to specify how such autoconfiguration works. To fill the void, Microsoft created an implementation that it calls Automatic Private IP Addressing (APIPA). Due to Microsoft's market power, APIPA has been deployed on millions of machines, and has thus become a de facto standard in the industry. Many years later, the IETF did define a formal standard for this functionality, in RFC 3927, Dynamic Configuration of IPv4 Link-Local Addresses.

Previous Topic/Section
DHCP Message Relaying and BOOTP Relay Agents
Previous Page
Pages in Current Topic/Section
Next Page
DHCP Server Conflict Detection
Next Topic/Section

If you find The TCP/IP Guide useful, please consider making a small Paypal donation to help the site, using one of the buttons below. You can also donate a custom amount using the far right button (not less than $1 please, or PayPal gets most/all of your money!) In lieu of a larger donation, you may wish to consider purchasing a download license of The TCP/IP Guide. Thanks for your support!
Donate $2
Donate $5
Donate $10
Donate $20
Donate $30
Donate: $

Home - Table Of Contents - Contact Us

The TCP/IP Guide (
Version 3.0 - Version Date: September 20, 2005

Copyright 2001-2005 Charles M. Kozierok. All Rights Reserved.
Not responsible for any loss resulting from the use of this site.